
Per-Pixel Translational Symmetry Detection, Optimization, and Segmentation

Peng Zhao∗ Lei Yang† Honghui Zhang∗ Long Quan∗

The Hong Kong University of Science and Technology

Abstract

We present a novel method for translational symmetry de-
tection, optimization, and symmetry object segmentation in
façade images. Unlike most previous methods, our detection
algorithm accumulates pixel-level correspondence in trans-
lation space. Thus it does not rely on feature point detection
and handles patterns with low repetition counts. To improve
the robustness with multiple interfering symmetries, we in-
troduce an image-space global optimization, which resolves
multiple per-pixel symmetry lattices. We then propose a
learning-based method that generates refined segmentation
of foreground symmetry objects of arbitrary shapes, with the
aid of the per-pixel symmetry information. Our proposed
method is accurate, robust and efficient as demonstrated by
an extensive evaluation using a large façade image database.

1. Introduction

Translational symmetry is one of the most characteristic fea-
tures of architectural designs. A prominent case of this is
building façade, which often exhibits repetitive patterns and
multiple instances of various building elements like window,
balcony and pillar. If correctly detected, the information
redundancy due to repetition can be exploited to assist de-
tection and segmentation of structural elements in façade
images [19, 34]. It can also provide valuable information to
handle difficult situations like partial occlusion and imper-
fect texture. This is particularly useful in building detailed
city models, which can benefit a vast number of applications
such as 3D map services (e.g. Google Earth and Microsoft
Bing Map), video games and movie production.

Although a number of methods for detecting different sym-
metries were developed in the past few decades (refer to [16]
for a systematic survey), fully automatic and robust detection
of translational symmetry in real-world architectural images
is still a challenging task. In particular, our study during
developing an image-based façade modeling system reveals
that existing algorithms for symmetry detection in images
do not meet our requirements. The reasons are as follows.

∗{zhaopeng, honghui, quan} at cse.ust.hk
†{yanglei} at alumni.ust.hk

(a) (b) (c) (d)

Figure 1: (a) The input image. (b) Translation vector opti-
mization. (c) Symmetry detection. (d) Symmetry segmenta-
tion. (Please zoom-in for details)

1. Symmetry object extraction. Existing methods only
provide result for each feature point or a rough region.
The exact segmentation of symmetry object regions and
per-pixel correspondences cannot be obtained.

2. Multi-symmetry interference. Multiple overlapping
symmetry patterns are usually not simultaneously de-
tected in a single pass.

3. Feature dependence. Many algorithms rely heavily
on precomputed features (e.g. feature points detected
using SIFT). Missing feature points at critical positions
can lead to incomplete or duplicated detection results.

4. Low-count repetition. The robustness of existing
feature-based methods is usually compromised when
the number of repetition is small.

We present a method that automatically detects and segments
translational symmetry patterns from images. To the best
of our knowledge, our method is the first one that aims to
address all of the above problems. Specifically, our result,
which can be obtained within a few seconds, contains both
pixel-level correspondence and refined segmentation of each
repetition instance as illustrated in Figure 1.

Similar to previous approaches [30, 35], we restrict our
method to handling translational symmetry in fronto-parallel
images. This may seem to be less general, but rectifying a
perspective view is already well developed as a preprocess-
ing step in many methods [19, 32]. Keeping these constraints
allows a more robust and efficient method to be designed, as
demonstrated in Section 2.

Nevertheless, a fast and robust detection algorithm satisfying
these constraints still faces many challenges. The lack of a

978-1-4673-1228-8/12/$31.00 ©2012 IEEE 526

priori knowledge of either the parameters of symmetry or
the shapes of patterns can cause ambiguities in detection.
Moreover, real-world photographs of façades often contain
occlusions, which further complicate the decision. We deal
with these ambiguities by employing pixel-level computa-
tion and a global optimization with spatial-coherence to
enforce reliable symmetry detection and segmentation in
the presence of noises and occlusions. Overall we make the
following contributions:

• A robust pixel-level translational symmetry detection
method that effectively identifies and separates multiple
repetitive patterns of arbitrary shapes and repetition
counts, without the need of extracted feature points.

• A MRF global optimization which resolves per-pixel
symmetry lattices and solves the ambiguity among
translation vectors. Multi-symmetry interference and
ambiguities and low repetitions are handled well.

• A learning-based method that automatically segments
salient symmetry objects of arbitrary shapes. This is a
major deviation from previous work.

Experiments with various inputs show that our proposed
method performs well in the presence of multiple symme-
tries, low-count repetitions and imperfections such as noise,
partial-occlusion and shadow. In general, our method pro-
vides a robust and efficient fundamental building block for
automatic shape analysis in image-based modeling.

1.1. Background and related work
Translational symmetry. A translational symmetry pattern
in a 2D image can be represented by a 2D lattice generated
by a pair of translation vectors tx and ty [4]. The lattice
points are represented as

{p0 + i · tx + j · ty, (i, j) ∈ [0,m)Z × [0, n)Z} , (1)

with the reference point p0 and number of repetition (m,n)
in the two translation directions. The repetitive element e0
is defined as an arbitrary shaped local image patch that is du-
plicated at each lattice points. The translation vectors tx and
ty are axis-aligned in our algorithm description, as is true
for the vast majority of façade images. Note that this can be
easily changed to more general settings, provided that tx and
ty are known and consistent in the image. In this paper, we
focus on detecting regular symmetric repetition. This also
includes multiple symmetry patterns present in a single im-
age, which we refer to as multiple modes. Each mode has an
independent set of properties Pi = (e0,p0, (tx, ty), (m,n)).
The challenge is that neither the number of modes nor the
properties of each mode are known in advance.

Each repetitive region is represented as Pi,j =
(e0, (tx, ty), (m,n)) which is generated m× n times by the
vector (tx, ty) from the fundamental region e0. If fundamen-
tal region e0 is represented as a single point, the pattern is

an array of points called a two-dimensional lattice [4]. Our
goal is to discover and extract all the translational symmetric
regions {Pi} corresponding to the repetitive patterns that
best explain the input image.

The problem of translational symmetry detection in images
has been extensively studied using a variety of formulations
[8, 9, 11, 13, 15, 19, 21, 31]. Most of these methods focus
on discovering a single lattice repetition. In contrast, our
proposed method focuses on handling multiple unknown
symmetry patterns. In the following, we classify some
closely related works of symmetry detection according to
their methodologies.

Feature-based method. A majority of symmetry detection
methods directly operate on extracted feature points from the
image for reduced dimensionality [7, 12, 14, 17, 20, 22, 25,
33]. Given a set of feature points, RANSAC-like methods
[7, 14, 22, 25] or propagation methods [33] are widely used
to detect translational symmetry.

In general, feature-based methods achieve good performance
due to reduced problem space. On the other hand, the re-
sults rely heavily on the quality of feature detection and
preprocessing. Missing or mismatch features often lead to in-
complete detection. Correctly perform feature clustering and
alignment is also a non-trivial task. Moreover, RANSAC and
propagation based methods require enough feature points
to confirm a candidate lattice. Therefore the miss-rate is
high when detecting low repetition-count features, which
is common in low-rise building façades. In addition, while
these methods detect lattices, they cannot provide pixel-level
symmetry information of arbitrary shape. Due to these con-
straints, we choose to directly process the image at the pixel
level and rely on mass pixel voting and global optimization,
thereby avoiding these difficulties.

Based on the assumption that horizontal repetitions must
exhibit reflective symmetry, Wu et al. [32] detect and seg-
ment repetitions with rectangular boundaries. In contrast,
our method aims at extracting curved boundaries of arbitrary
shaped salient regions, which also allow disjoint and mul-
tiple interleaved patterns. Zhao and Quan [35] describe a
method detecting multiple symmetries using joint spatial and
transform space detection. On the other hand, our method
does not rely on feature points, provides per-pixel result
with segmentation, and is also significantly faster. Teboul
et al. [29, 30] and Shen et al. [26] partition input image into
disjoint rectangular regions. The rectangular regions within
the same group may have various sizes, without alignment
and accurate correspondence. Our method instead aims at
segmenting the windows of arbitrary shapes and classifying
them into symmetry groups with per-pixel correspondence.

Transform space method. Recently, there are several semi-
nal works [18, 23, 35] using transform space to detect sym-

527

metry. The transform space gathers the statistics of pairwise
translations of points within a point set, which is usually the
feature point set extracted from the input. Take translational
symmetry detection as an example, a set of matching point
pairs from this input are first gathered. Then, the transla-
tion vector between each point pair (pi,pj) is mapped and
voted into the transform space, which has the same unit and
dimension as the input. Since all the translation vectors of
the same object should be multiples of a shortest vector, the
accumulation of them lead to peaks in the transform space.
The desired lattice pattern thus can be detected by locating
such peaks.

A key step of transform space methods is to robustly and
efficiently identify the matching point pairs from the feature
point set. This is especially challenging if we consider all the
image pixels rather than a limited feature point set. Another
difficulty is that most previous methods cannot deal with
interference of multiple symmetries in the transform space.
This is partly due to the fact that spatial information of each
vote is lost in the transform space, which creates ambiguities.

Our method also performs transform-space voting. How-
ever, we only obtain potential translation candidates from
the transform space. With the dominant candidates, we re-
turn to the image space and use a Markov Random Field
(MRF) global optimization to decide the translation mode
of each pixel. Such a joint approach significantly improves
the robustness of detection in the presence of multiple sym-
metries. In addition, we apply a random approach to find
the matching point of each pixel, which not only improves
efficiency, but also helps to solve the ambiguity issue.

1.2. Approach overview
The input to our approach is a fronto-parallel texture image.
An arbitrary input image can be rectified, for example, by
using the method presented by Müller et al. [19]. Although
the rectified images may not be perfect, our detection method
is robust in handling mild image skews.

A schematic example illustrating the major stages of our
method is shown in Figure 2. Given an input image, in
Section 2 we introduce the symmetry detection method. Its
output is a set of detected modes {Pi} together with (ten-
tative) per-pixel symmetry mode information in the input
image. Using this information, in Section 3, we describe
a learning-based method to segment the salient repetitive
objects from the background façade wall. We provide a
thorough evaluation of the individual steps in our pipeline,
together with comparisons with state-of-the-art methods in
Section 4.

2. Translational Symmetry Detection
Given an input image, we would like to find all repetition
modes {Pi} in it. Since each mode has an independent set of

Figure 2: Overview of our approach.

properties Pi = (e0,p0, (tx, ty), (m,n)), the entire search
space is huge. We thus resolve the translation vector (tx, ty)
and the other parameters in separated steps. The basic steps
of the algorithm are as follows:

1. Compute the horizontal/vertical translation map, which
contains the optimized translation vector at each pixel.
Each vector initially translates the pixel to its nearest
horizontal/vertical matching pixel. These vectors are
regularized using translation space voting, and are as-
signed back to each pixel with a MRF optimization.

2. Attempt to fit a translation lattice (mode) for each pixel
by using the translation map. Cluster similar lattices
and find the dominant symmetry modes in the image.

Below we describe each step in more details.

2.1. Translation map
Translation map initialization. For each pixel pi, we aim
to find the nearest pixel ph and pv that closely matches pi in
their local neighborhood patches in horizontal and vertical
direction respectively. We refer to ph and pv respectively as
the horizontal and vertical nearest nearest-neighbor (NNN)
of pi.

A brute-force approach of computing NNN is as follows.
We first compute the pairwise matching scores of all the
pixels on the horizontal (vertical) line, by taking the SSD of
their local square patches (7× 7) in HSV color space. The
matching score can also be computed in other spaces such
as SIFT. For each pixel, the top k matches are found, and the
spatially nearest one is selected as the horizontal (vertical)
NNN of pi. Note that such a spatial proximity constraint
removes ambiguity when multiple correspondences exist.
The result of this process is a dense translation vector map.

Since the result of this k nearest neighbor (kNN) is usually
spatially coherent within the image, we apply a randomized
method [1] to accelerate kNN detection. When restricting
the search in the horizontal (vertical) direction, the random-
ized search obtains a unidirectional kNN map. At each
pixel pi, this map stores its top k = 4 approximate nearest-
neighbors. We then select the spatially closest horizontal
(vertical) approximate nearest-neighbor phi (pvi) as the NNN
for pi. After that, we compute the initial translation vector

528

of pi as TI(pi) = (|phi − pi|, |pvi − pi|). A translation map
stores this initial translation vector of all pixels.

Translation vector candidates. In this step, the translation
vectors of all pixel pairs are accumulated in a 2D transform
space to vote for dominant translation vectors. Although
not exactly uniform, all the translation vectors that belong
to a certain symmetry element are statistically consistent
and will result in a strong peak in transform space. We then
extract the topm peaks as candidate translation vectors using
meanshift [3], with window size set to 5 and m set to 15. We
threshold the ones with value lower than 0.5% of the image
area. Note that when multiple symmetry patterns exist in
the image, they may have similar translation vectors that
contribute to the same peak in transform space. Next, we
will return to the image space to resolve this ambiguity.

Translation map optimization. The candidate translations
are the potential translations modes of the entire image. We
assume each pixel is associated to at most one translation
mode, i.e. is only covered by one repetitive element. If
we take the candidate translation vectors as labels, finding
the unique translation vector for each pixel is equivalent to
selecting the best label for it.

Following this idea, we first define a weighted graph G =
〈V, E〉, with the vertex set V and the edge set E . Each vertex
represents one pixel in the image. Each edge is established
between neighboring pixels (4-way connectivity). Our task
is to select a unique label li ∈ {1 . . .M} for each vertex vi ∈
V , which corresponds to selecting a translation vector from
the candidate translation vector set

{
TkP , k ∈ {1 . . .M}

}
for it. Since we assume that the labels are generally coherent
within blocks of symmetry patterns, this labeling problem
is then equivalent to a MRF optimization. The solution
L = {li} can be obtained by minimizing a Gibbs energy [6]:

Et (L) =
∑
vi∈V

φi (li) + ρ
∑
eij∈E

ψij (li, lj) . (2)

The data term φ(li) is defined as a weighted sum of two
terms

φ(li) = dr

(
TliP
)

+α

(
dr(TliP)− dr(TI(pi))

)(
TliP − TI(pi)

)
min

(
TliP ,TI(pi)

) .

(3)
The distance term dr(T) is minimum translation matching
error when applying the translation vector T, defined as

dr(T) = min
t∈δ
{SSD (Π (pi) ,Π (pi + t))} , (4)

where Π(p) represents a local image patch around p, and
δ = {(Tx, 0), (−Tx, 0), (0, Ty), (0,−Ty)}. The first term
in Eq. 3 evaluates the fitting error using translation vector.
The second term favors a shorter translation vector if the
fitting errors are the same. The smoothing term ψij (li, lj)

in Eq. 2 is the L2-norm of the difference between TliP and

Figure 3: Lattice forming and clustering. Left: The pixels
within one unitranslation region are coded in different colors
and shapes based on local content. The lattice of blue circle
is built by linking similar pixels. Right: In each round of
hierarchical clustering, two clusters with the highest dl are
merged.

TljP . The relative weight ρ is set to 3 which is empirically
optimal.We adapt the implementation of Komodakis and
Tziritas [10] to obtain a local optimized label configuration
S within a constant factor off the global minimum. For a
regular 1000× 1000 image, such inference converges within
10 iterations. As shown in Figure 2(b), the result of MRF
optimization is a partition of the graph into subgraphs, which
map to several connected regions in the image, each with
a distinct label. The translation map is then updated with
corresponding labeled translation vectors at each pixel.

2.2. Symmetry detection
After the MRF optimization, the translation map is parti-
tioned into multiple regions, each with a unique translation
vector. We will refer to these regions as unitranslation re-
gions hereafter. In each unitranslation region, although all
pixels share the same translation vector, they may belong to
different modes (see an example in Figure 5). We then aim
to further segment these regions according to their repetition
modes. To achieve this, we introduce a bottom-up clustering
algorithm. In general, we first detect single lattices in the
image, with each pixel belonging to one lattice. Then, we
merge the neighboring single lattices into clustered lattices
based on similarity. Regions with different modes are then
automatically separated into respective lattice clusters in this
process.

To compute pixel-wise single lattices, we first identify links
that constitute potential lattice edges. In a unitranslation
region, we add a link between two pixels if: (1) they translate
directly to each other by one horizontal or vertical translation
vector that they share; (2) they are locally similar. The local
similarity of two pixels is then based on either of the two
conditions: (1) the SSD distance of their local patches is
smaller than the tight threshold th = 20× s2; (2) the SSD
distance is smaller than the loose threshold tl = 60 × s2
and one of them is the NNN of the other one. This helps to
improve stability on textureless features. After building all
the links, each set of linked pixels then form a single lattice.
We thus have many single lattices in each unitranslation
region. Note that such lattices may not have complete m×n
points. An example of a linked single lattice is shown on the
left of Figure 3.

529

In the lattice clustering step, we merge similar single lat-
tices to generate dominant and complete repetitive regions.
We define two single lattices as potentially mergeable if
they have adjacent pixels. The similarity score of two
mergeable lattices L1 and L2 is defined as: dl(L1,L2) =
Nu(L1,L2) − Nn(L1,L2), where Nu(L1,L2) is the total
number of adjacent pixels of L1 and L2 and Nn(L1,L2)
is the total number of non-adjacent pixels from both. A
clustered lattice can also be merged with a single lattice or
another clustered lattice in the same unitranslation region if
they have adjacent pixels. The score between a single lattice
and a clustered lattice is the highest score between the single
lattice and all the lattices in the clustered lattice. The score
between two clustered lattices is the highest one between all
possible lattice pairs.

Using this distance, we apply a hierarchical clustering
scheme that merges two single or clustered lattices with
the highest dl among all the lattice pairs in every step. The
merged lattice topology is taken as the union of the con-
tributing ones. We continue this merging process until the
highest dl is below a given threshold thc = 4 in order to
avoid merging isolated points. After this is terminated, usu-
ally only a small number of dominant lattices remain. We
then iteratively extract the largest lattice based on number
of pixels, and discard smaller ones that have overlap with
it. We continue this process until no lattice remains. The
extracted lattices become the dominant modes present in
this unitranslation region. The whole process is illustrated
on the right of Figure 3. Note that since our method works
at the pixel level, even two similar repetitive patterns that
connect with only one pixel also have a good chance to be
merged. Overall the clustering process is fast and robust.
After clustering all the pixels are further categorized into
dominant repetition modes, as color coded in Figure 2(c).

3. Symmetry Object Segmentation
A distinct advantage of our symmetry detection algorithm
is that it provides pixel-level correspondences associated
with repetition lattices. In this section, making use of these
correspondences, we propose a method to obtain fine seg-
mentation of each salient symmetry object.

In a façade image, we are interested in extracting typical ar-
chitectural elements including windows, doors, decorations
and shop signs. We call them non-wall elements. To ex-
ploit these semantic descriptions, we apply a learning-based
classification in conjunction with an iterative refinement that
leverages the symmetry information. The major steps of our
algorithm are as follows.

1. Train a random forest classifier for known categories,
e.g. wall and non-wall, by using manually labeled
training images.

(a) (b) (c) (d)

Figure 4: Training input and decision output of the random
forest: (a) One training image. (b) Corresponding training
labels. (c) Initial probability map of the wall class for the
image in Figure 2. (d) Initial probability map of the non-wall
class.

2. Compute the initial probability and segmentation of
each pixel on the input image using the random forest.

3. Iteratively refine the segmentation result, using both
symmetry constraints and the class probability given by
the random forest.

3.1. Initial wall/non-wall classification
Given a façade image, we first compute the initial classifica-
tion probability of each pixel based on prior knowledge.
Informally, the initial classification probability PI(ci;p)
indicates the likelihood of pixel p belonging to a class
ci ∈ {1 . . .K}. To compute this score, we choose to use the
random forest [2], which shows excellent performance and
accuracy for image patch classification. For every pixel in
the test image, each decision tree i in the random forest gives
the initial classification score S(ci;p). We then normalize
each score by the sum of all scores of pixel p to obtain
the probability: PI(ci;p) = S(ci;p)∑

cj
S(cj ;p)

. We adapt a well-

developed library RFlib [28] to generate the random forest.
We use the Texton [27] and Histogram of Oriented Gradi-
ents (HOG) [5] feature descriptors to train the classifier. For
the training, we collected and rectified 146 façade images
from the internet. In each image, we manually label each
pixel as wall or non-wall. An example of the training images
and resulting initial probabilities are shown in Figure 4.

Based on the initial classification probability, we first label
each pixel as either wall or non-wall. Then we refine this
labeling by building a similar graph as in translation map
optimization (Section 2.1). Here, the labels are {ci}. For a
node v, the data term is defined as φ(ci) = PI(ci; v). For
two connected nodes, the smoothing term is 0 if they have
the same label, or 1 otherwise. The labeling result after this
optimization is the initial classification. Examples are shown
in Figure 2(d) and 5(d).

3.2. Iterative segmentation
We apply an iterative scheme to refine the segmentation of
the symmetry features. We first estimate a bounding box
for each detected symmetry mode that we call a Region of
Interest (ROI). Then, inside each ROI, we jointly segment
all the instances of the symmetry pattern using the initial

530

Algorithm 1 Iterative segmentation in each ROI
1. Initialize the solution label set C with the labels that have the highest
initial classification probability; initialize the corresponding color GMMs.
2. Assign color GMM components to all pixels in the ROI.
3. Learn color GMM parameters using the current label set.
4. Compute the GMM classification probability of pixels using learned
color GMMs; update the energy function Es.
5. Update segmentation labels by minimizing the energy function Es.
6. Repeat step 2-6 until convergence.

classification, the probability PI(ci;p) and the per-pixel
symmetry correspondences.

To compute the ROI of each symmetry mode, we compute
the bounding boxes of all symmetry regions covered by the
lattice. Since the initial regions may not be complete, we
dilate the bounding box by a row/column on each side.

Within each ROI, we adapt an iterative graph cut optimiza-
tion algorithm [24] for the joint segmentation of symmetry
regions. We build a graph similar to the one used for the
translation map optimization in Section 2.1. In addition to
the edges between adjacent pixels, we also add edges be-
tween pixels that are connected by symmetry lattice edges.
These additional edges will be used to enforce consistent seg-
mentation of symmetry regions. We then apply the iterative
graph-cut method described in Algorithm 1 for segmenta-
tion. In each iteration, we solve a MRF optimization. The
solution C = {ci} that contains labels to all the pixels {vi}
is obtained by minimizing the following Gibbs energy:

Es (C) =
∑
vi∈V

φ′i (ci) + ρ′
∑
eij∈E

ψ′
ij (ci, cj) . (5)

The data term of a vertex vi is defined as

φ′i (ci) = λ

∑
pk∈Ri

PI(ci;pk)

|Ri|
+ (1− λ)PG(ci;pk) (6)

where Ri is the set of all pixels in the lattice of vi. Besides
the initial probability PI(ci;pk), we also use the color Gaus-
sian Mixture Models (GMM) [24] to model the color distri-
bution of different regions. PG(ci;pk) is the probability of
pi belonging to ci estimated by the learned color GMMs for
regions in the label set ci in each iteration. The smoothness
term enforces that two symmetry-related vertices have the
same label. It is defined as

ψ′
ij (ci, cj) =


0 ci = cj

1 ci 6= cj , S (vi, vj) = 0

∞ ci 6= cj , S (vi, vj) = 1

. (7)

where S(vi, vj) = 1 when vi and vj share the same symme-
try lattice, or 0 otherwise.

In our experiments, the algorithm usually converges within
10 iterations. Some results are shown in Figure 2(e) and 5(e)
and analyzed in Section 4.

After obtaining the accurate shape segmentation of each
symmetry object, we adjust its associated lattice by moving
the lattice points to the centers of symmetry objects. This
completes the definition of each symmetry mode.

4. Evaluation and Discussions

We implemented the method in C++ and all results were
generated on an Intel i7-930 CPU with 12GB RAM. In total
we tested 235 input images, of which the representative ones
are demonstrated in this paper.

Complexity. The time complexity of symmetry detection is
O(s2wh) where h and w are the height and width of input
image respectively, and s is the window size in SSD. In
practice, for a typical 10002 image, the proposed symmetry
detection takes in 10± 4 seconds.

Detection robustness. We use the precision and recall rates
described by Park et al. [22] for evaluation. The precision
on detecting multiple symmetries (91.6%) is superior. Most
previous methods based on transform space suffer the am-
biguity and interference of different translations. We deal
with this problem by choosing one short translation for each
pixel using the MRF optimization. As shown in the first
row of Figure 5, our optimization successfully partitioned
the major region with different translations, even when they
are spatially overlapping. Our algorithm handles adequate
occlusion by vegetation, billboard and self-occlusions, etc.
The third row of Figure 5 shows the performance on façade
image with occlusion.

MRF optimization. A challenging example with multiple
interfering and low-count symmetries is shown in Figure 1.
The dominant symmetries are detected correctly. In some
regions with occlusion and noise, the translation map is
also split into small parts, but most symmetry patterns are
separated into large and connected parts. It is also shows the
ability on detecting patterns in different sizes – both the large
windows and the small eaves and decorations are detected.
Moreover, long translation vectors with multiple overlapping
symmetries (such as the windows on the second floor) are
also detected and correctly assigned to corresponding pixels.
As our method finds the lowest level symmetries, we group
symmetric regions with the same translation and count, and
similar texture to obtain a hierarchy.

Segmentation. The symmetry object segmentation typi-
cally runs in a couple of seconds. On all inputs, the initial
wall/non-wall classification achieves 60.3% in average pixel
accuracy [30] and then the iterative optimization improves it
to 93.4%. The key to such a significant improvement is that
the symmetry detection provides the symmetry constraint as
well as bounding boxes for the iterative segmentation. The
extracted boundaries of symmetry objects are close to their

531

(a) (b) (c) (d) (e)

Figure 5: Example outputs by different steps of our algorithm. (a) Input image. (b) Translation vector optimization. (c) Lattice
fitting with pixel grouping. (d) Wall/non-wall classification. (e) Symmetry object segmentation.

(a) (b) (c) (d) (e)

Figure 6: Examples of non-rectangular symmetry object
detection and segmentation.

perceptual boundaries and the non-rectangular windows are
also correctly segmented, as shown in Figure 1, 5 and 6.

Comparative results. We also perform an exhaustive com-
parison between the proposed method and that of Wu et
al. [32] as follows. We use the results provided on the au-
thor’s website. From their test images [36], we select 60
images successfully rectified by their method. Both methods
run at similar speeds. In general, their results obtained the
precision and recall rates at 72.4% and 61.8% (close to the
statistics reported in their paper), respectively, as compared
to 89.2% and 82.5% with our method. One comparison is
shown in Figure 7. Generally we observe that our method
correctly recognizes more repetitive patterns, especially with
multiple and interfering symmetries. Also note that, as men-
tioned in Section 1.1, their concept of salience is different
from ours, which is also visible in the results.

Speedwise, our method is about 100 times faster than pre-
vious feature-point-based approach [35]. The latter also
tends to break large symmetry patterns into several duplicate
symmetries due to non-overlapping lattices. Our per-pixel
computation significantly reduces the chance of duplicate

(a) (b) (c) (d)

Figure 7: Comparison with [32]. (a) The rectified input
image. (b) Result of symmetry detection. (c) Result of sym-
metry object segmentation. (d) Result of Wu et al. [32] on
the original image.

symmetries. Our method also outperforms in low-count repe-
tition when compared with other related methods [19, 22], In
addition, our method extracts the exact shape of the pattern,
which none of the previous approaches provide.

Limitations. If the input image suffers from severe occlu-
sion or shadow, etc., the performance may degrade to some
extent. In addition, certain correspondences are not consid-
ered in our algorithm. For example, in the second row of
Figure 5, the windows in the leftmost and rightmost columns
are identical. They are separated, as we prefer the short
translation in initial translation map computation.

5. Conclusion
In this paper, we propose a novel automatic pixel-level sym-
metry detection and segmentation method for fronto-parallel
images. Extensive experiments and comparisons shows that
our method efficiently detects and optimally segments mul-
tiple symmetry patterns of arbitrary shapes in pixel-level.
Compared with previous approaches, our method do not rely
on extracted feature points, and can provide refined shape of
the symmetry pattern. The performance of detecting multi-
ple interfering symmetries and low-count symmetries is also

532

significantly improved.

Acknowledgement This work is partially supported by
the Hong Kong RGC-GRF 618711, RGC-GRF 618510, and
the RGC-GRF 619409.

References

[1] C. Barnes, E. Shechtman, D. B. Goldman, and
A. Finkelstein. The generalized PatchMatch corre-
spondence algorithm. In ECCV, 9 2010. 3

[2] L. Breiman. Random forests. Mach. Learn., 2001. 5
[3] D. Comaniciu and P. Meer. Mean shift: a robust ap-

proach toward feature space analysis. IEEE TPAMI,
2002. 4

[4] H. Coxeter. Introduction to Geometry. John Wiley &
Sons, Inc. 2

[5] N. Dalal and B. Triggs. Histograms of oriented gradi-
ents for human detection. In CVPR, 2005. 5

[6] S. Geman and D. Geman. Stochastic relaxation, gibbs
distributions and the bayesian restoration of images.
IEEE TPAMI, 1984. 4

[7] L. V. Gool, G. Zeng, F. V. den Borre, and P. Müller.
Towards mass-produced building models. In PIA, 2007.
2

[8] J. Han, S. J. Mckenna, and R. Wang. Regular texture
analysis as statistical model selection. In ECCV, 2008.
2

[9] J. Hays, M. Leordeanu, A. A. Efros, and Y. Liu. Dis-
covering texture regularity as a higher-order correspon-
dence problem. In ECCV, 2006. 2

[10] N. Komodakis and G. Tziritas. Approximate labeling
via graph cuts based on linear programming. IEEE
TPAMI, 2007. 4

[11] T. Korah and C. Rasmussen. Analysis of building
textures for reconstructing partially occluded facades.
In ECCV, 2008. 2

[12] T. K. Leung and J. Malik. Detecting, localizing and
grouping repeated scene elements from an image. In
ECCV, 1996. 2

[13] H.-C. Lin, L.-L. Wang, and S.-N. Yang. Extracting
periodicity of a regular texture based on autocorrelation
functions. PRL, 1997. 2

[14] J. Liu and Y. Liu. Multi-target tracking of time-varying
spatial patterns. In CVPR, 2010. 2

[15] Y. Liu, R. Collins, and Y. Tsin. A computational model
for periodic pattern perception based on frieze and
wallpaper groups. IEEE TPAMI, 2004. 2

[16] Y. Liu, H. Hel-Or, C. S. Kaplan, and L. V. Gool. Com-
putational symmetry in computer vision and computer
graphics. Found. and Trends in Comput. Graph. Vision,
2010. 1

[17] B. Martin, B. Alexander, W. Michael, S. Hans-Peter,
and S. Andreas. Symmetry detection using line features.
CGF, 2009. 2

[18] N. J. Mitra, L. J. Guibas, and M. Pauly. Symmetrization.
ACM TOG, 2007. 2

[19] P. Müller, G. Zeng, P. Wonka, and L. V. Gool. Image-
based procedural modeling of façades. ACM TOG,
2007. 1, 2, 3, 7

[20] P. Musialski, P. Wonka, M. Recheis, S. Maierhofer,
and W. Purgathofer. Symmetry-based façade repair. In
VMV, 2009. 2

[21] M. Park, K. Brocklehurst, R. T. Collins, and Y. Liu.
Deformed lattice detection in real-world images using
mean-shift belief propagation. IEEE TPAMI, 2009. 2

[22] M. Park, K. Brocklehurst, R. T. Collins, and Y. Liu.
Translational symmetry-based perceptual grouping
with applications to urban scenes. In ACCV, 2010.
2, 6, 7

[23] M. Pauly, N. J. Mitra, J. Wallner, H. Pottmann, and
L. J. Guibas. Discovering structural regularity in 3D
geometry. ACM TOG, 2008. 2

[24] C. Rother, V. Kolmogorov, and A. Blake. “GrabCut”:
Interactive foreground extraction using iterated graph
cuts. ACM Trans. Graph., 23(3), 2004. 6

[25] G. Schindler, P. Krishnamurthy, R. Lublinerman,
Y. Liu, and F. Dellaert. Detecting and matching re-
peated patterns for automatic geo-tagging in urban en-
vironments. In CVPR, 2008. 2

[26] C.-H. Shen, S.-S. Huang, H. Fu, and S.-M. Hu. Adap-
tive partitioning of urban facades. ACM TOG, 2011.
2

[27] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Tex-
tonboost for image understanding: Multi-class object
recognition and segmentation by jointly modeling tex-
ture, layout, and context. IJCV, 2009. 5

[28] O. Teboul. RFLib, 2010. http://vision.mas.ecp.fr/
Personnel/teboul/RFlib.html. 5

[29] O. Teboul, I. Kokkinos, L. Simon, P. Koutsourakis, and
N. Paragios. Shape grammar parsing via reinforcement
learning. In CVPR, 2011. 2

[30] O. Teboul, L. Simon, P. Koutsourakis, and N. Para-
gios. Segmentation of building facades using procedu-
ral shape priors. In CVPR, 2010. 1, 2, 6

[31] Y. Tsin, Y. Liu, and V. Ramesh. Texture replacement
in real images. In CVPR, 2001. 2

[32] C. Wu, J.-M. Frahm, and M. Pollefeys. Detecting large
repetitive structures with salient boundaries. In ECCV,
2010. 1, 2, 7

[33] H. Wu, Y.-S. Wang, K.-C. Feng, T.-T. Wong, T.-Y. Lee,
and P.-A. Heng. Resizing by symmetry-summarization.
ACM TOG, 2010. 2

[34] J. Xiao, T. Fang, P. Zhao, M. Lhuillier, and L. Quan.
Image-based street-side city modeling. ACM TOG,
2009. 1

[35] P. Zhao and L. Quan. Translation symmetry detection
in a fronto-parallel view. In CVPR, 2011. 1, 2, 7

[36] ZuBuD. Zurich building image database, 2003. http:
//www.vision.ee.ethz.ch/showroom/zubud/. 7

533

