Lei Yang, Dmitry Zhdan, Emmett Kilgariff, Eric B. Lum, Yubo Zhang, Matthew Johnson, and Henrik Rydgård

VISUALLY LOSSLESS CONTENT AND MOTION ADAPTIVE SHADING IN GAMES

ACM I3D, May 21-23 2019 - Montréal, Canada

OUTLINE

Background

Content adaptive shading

Theory & Results

Motion adaptive shading

Theory & Results

Demo: Wolfenstein II: the New Colossus

OVERVIEW

Why do we need adaptive shading?

The cost of pixel shading increases dramatically in today's games

- Enhanced realism and special effects
- Higher resolution and framerate

OVERVIEW

Pixel Shading Inefficiencies

Shader gets run
every single pixel,
regardless of content

Image from Wolfenstein II: the New Colossus

VARIABLE RATE SHADING (VRS)

Shading rate options

2x2

1x2

2x4

MAIN CONTRIBUTIONS

Questions we answered in this paper

- What is the error caused by lowering shading rate?
- How is visual error affected by motion?

3. How to implement adaptive shading efficiently in games?

ADAPTIVE SHADING

Contrast Sensitivity in HVS

Error introduced by coarse shading is in this frequency range

Spatial frequency

Campbell-Robson CSF chart Courtesy of <u>Izumi Ohzawa</u>

ADAPTIVE SHADING FLOW

Which shading rate to use? Tell me the error

Deriving the error in 1D (X or Y)

Estimate the error per tile

Previous frame

$$\mathcal{E}(\boldsymbol{I}, \boldsymbol{I}^{H}) = \|\boldsymbol{I} - \boldsymbol{I}^{H}\|_{2} \cong \sqrt{\sum_{N} (I_{i} - I_{i-1})^{2}} = \|\boldsymbol{I} * \boldsymbol{D}\|_{2} \quad (\boldsymbol{D} \text{ is the differencing kernel } [-0.5, 0.5])$$

Instead of using $(I_2 - I_1, I_4 - I_3, ...)$, we involve all pairs $(I_2 - I_1, I_3 - I_2, I_4 - I_3, ...)$

- Stabilized result when image is shifted by 1 pixel
- More robust estimation when using previous frame instead of true signal

Error estimate for quarter-rate shading

$$\begin{split} \mathcal{E}\big(I,I^H\big) &= \left\|I-I^H\right\|_2 & \text{(Mean-squared error)} \\ &\cong \left\|I*D\right\|_2 & \text{(D: differencing kernel)} \\ &= \left\|\mathcal{F}(I)\cdot\mathcal{F}(D)\right\|_2 & \text{(Convolution and Parseval theorems)} \\ &\text{(omitting const. } 1/\sqrt{N}) \\ &= \left\|\mathcal{F}(I)\cdot(\mathbf{1}-\mathcal{F}(B_2))\right\|_2 & \text{(B_2: box kernel $1/2$[1,1])} \\ &\mathcal{E}\big(I,I^Q\big) &= \left\|\mathcal{F}(I)\cdot(\mathbf{1}-\mathcal{F}(B_4))\right\|_2 & \text{(B_4: box kernel $1/4$[1,1,1,1])} \\ &= \left\|\mathcal{F}(I)\cdot(\mathbf{1}-\mathcal{F}(B_2))\cdot\mathcal{K}\right\|_2 & \text{($K: frequency bin scaling)} \\ &\cong k\cdot\left\|\mathcal{F}(I)\cdot(\mathbf{1}-\mathcal{F}(B_2))\right\|_2 & \text{(Pre-integration)} \\ &= k\cdot\left\|I*D\right\|_2 \end{split}$$

Determine shading rate

$$\mathcal{E}(I,I^H) \cong ||I * D||_2$$

Independent decision for X and Y:

$$\mathcal{E}(I,I^H)$$
 < threshold?

Enable half-rate shading

$$\mathcal{E}(I, I^Q) = k \cdot \mathcal{E}(I, I^H) < \text{threshold}?$$

Enable quarter-rate shading

Use a "Just Noticeable Difference" (JND) threshold (Weber-Fechner Law)

WEBER-FEGINER LAW

"The just-noticeable difference between two stimuli is proportional to the magnitude of the stimuli"

JND_THRESHOLD = SENSITIVITY_THRESHOLD * BASE_LUMINANCE

Image courtesy of Denys Mishunov

Back to 10,000 feet view

For each 16x16 screen tile reprojected from previous frame:

OVIDIA

RESULTS

Roswell Scene

(Average shading

rate: 0.55x)

RESULTS

Submarine Scene
(Average shading rate: 0.41x)

IN REAL

WORLD

* Visit <u>testufo.com</u> to learn more

LCD PERSISTENCE BLUR *

Lower shading rate

MOTION BLUR AND PERCEIVED ERROR

How motion blur hides VRS error

Factor motion influence into adaptive shading

Motion-based VRS error estimate scaler

Two scalar functions:

For half-rate: $\mathcal{E}_H(v) = b_H(v) \cdot \mathcal{E}_H$

For quarter-rate: $\mathcal{E}_Q(v) = b_Q(v) \cdot \mathcal{E}_H$

We compute $b_H(v)$ and $b_Q(v)$ numerically

Then fit two closed-form functions:

$$\tilde{b}_H(v) = \left(\frac{1}{1 + (1.05v)^{3.10}}\right)^{0.35},$$

$$\tilde{b}_Q(v) = 2.13 \left(\frac{1}{1 + (0.55v)^{2.41}}\right)^{0.49}.$$

(Details in the paper)

Unified content and motion adaptive shading

Per-tile motion speed v is the minimum motion vector across the tile

Effect on the shading rate pattern

ADAPTIVE SHADING PERFORMANCE

Overall cost and benefit

Engine change: add a few compute passes to generate shading rate image

- Simple API calls to enable VRS on forward shading passes
- Overhead: 0.2ms for 4K (2160p) on a RTX2080Ti, completely hidden in async compute

Performance benefit (UE4/id Tech 6):

- 2x average, up to 5x performance gain in PS-bound forward passes
- 5% 20% reduction in frame time (~1-3ms saving for 60FPS target)

SUMMARY

Adaptive shading: now and future

- Use the new GPU feature: VRS Minor change in engine, supported by all major APIs
- Model the shading error with frequency space analysis say goodbye to old heuristics
- 2x average, up to 5x performance gain in forward shading passes
- Visually indistinguishable from full-rate shading

Future work: adaptive shading in non-forward shading passes

- Deferred & post-processing passes using compute pipeline
- Ray tracing

