

Shiqiu (Edward) Liu

Marco Salvi

A SURVEY OF TEMPORAL ANTIALIASING TECHNIQUES

Eurographics 2020, State of the Art Report (STAR), May 26, 2020

TEMPORAL ANTIALIASING (TAA)

Overview

- De facto standard for antialiasing in today's high-end 3D real-time renderers
- Particularly suitable for deferred renderers, replacing MSAA
- Misnomer traditionally used for "temporal aliasing" reduction (a.k.a. motion blur)

TEMPORAL ANTIALIASING (TAA)

a.k.a. temporally amortized supersampling

BRIEF HISTORY

How TAA has evolved

[NSL*07, SJW07]	\checkmark	\checkmark		\checkmark							
[YNS*09]		✓	✓	✓			✓				
[HEMS10]		✓		✓			✓				
[Sou11]				\checkmark		✓					
[Mal12]				✓			✓				
[Kar14, Xu16, Sal16]			✓	\checkmark	\checkmark					✓	
[Dro14]			✓	✓		✓	✓				
[Jim16]			✓		\checkmark	✓	✓				
[Aal16, Epi18]							✓				
[PSK*16, XLV18]									✓		
[EM16, Wih17, dCl17]				✓	✓			✓			
[Sal17, Nvi20*]				✓	✓		✓				✓

History reprojection History resampling rejection by History and Hybrid spatial antial asing the construction of the stating the property of the stating of

[✓] Signifies contributions to the corresponding topic

^{*} Released after this paper; see GTC 2020 talk "DLSS 2.0 - Image reconstruction for real-time rendering with deep learning" by Edward Liu

TEMPORAL ANTIALIASING

Basic building blocks and flow

SAMPLE GENERATION

Viewport jittering

- Draw samples from a low discrepancy progressive sequence
 - E.g. Halton(2,3)
- Adjust projection matrix to apply the subpixel offset per frame
 - All pixels use the same offset

SAMPLE ACCUMULATION

Reuse resolved color, not individual samples

Exponential smoothing

SAMPLE ACCUMULATION

Exponential smoothing

- Assign lower weights to older (possibly stale) samples
- Uneven weights can reduce the quality of antialiasing
- Optional: use adaptive α

α

HISTORY REPROJECTION

for moving objects / camera

- Reuse history under motion
- Motion vector
 - From camera matrices + 3D positions (static objects)
 - From forward rendering passes (animated objects)
- Image resampling
 - Bilinear, bicubic, ...

HISTORY VALIDATION

Avoid reusing false/stale data

- History color can be wrong
 - Disocclusion
 - Shading changes
 - Incorrect motion vector
- Fix history color
 - Rejection
 - Rectification

HISTORY REJECTION

Avoid reusing false/stale data

- Detect invalid history based on
 - Depth
 - Surface normal
 - Object/primitive ID
 - Color (filtered)
- Reject or fade out invalid color
 - Clamp α

HISTORY RECTIFICATION

Make history more consistent with new color samples

Convex hull clipping

HISTORY RECTIFICATION

Make history more consistent with new color samples

AABB clipping/clamping

HISTORY RECTIFICATION

Make history more consistent with new color samples

Variance clipping

TEMPORAL UPSAMPLING

Boosting output resolution

Keep input (sample) resolution, increase history (output) resolution

Regular TAA

TEMPORAL UPSAMPLING

Scaling-aware sample accumulation

Step 1: spatial upscaling from current frame samples

Regular TAA

TAA + 1.5x Upsampling

TAA + 2x Upsampling

TEMPORAL UPSAMPLING

Scaling-aware sample accumulation

Step 2: adaptive blending based on sample location and upscaling factor

CHECKERBOARD RENDERING

Temporal upsampling with a special sampling pattern

- Alternating checkerboard pattern between odd and even frames
- Fixed 1:2 upsampling rate; uses MSAA or target-independent rasterization

Frame *n*-1

Frame *n*

COMPARISON

1080p -> 1440p Temporal-upsampled output One input frame Temporal-antialiased output

Culprit #1: History resampling

- History reprojection involves image resampling
- ightharpoonup Repeated resampling over multiple frames \rightarrow loss of high frequency details
- Quality improves with better (more expensive) resampling filters

Resample 100 times

Catmull-Rom

- History clipping / clamping use current frame color to rectify history samples
- Can often incorrectly remove detailed features in history

- History clipping / clamping use current frame color to rectify history samples
- Can often incorrectly remove detailed features in history

- History clipping / clamping use current frame color to rectify history samples
- Can often incorrectly remove detailed features in history

Culprit #2: History-clipping/clamping

chromaticity (x)

- History clipping / clamping use current frame color to rectify history samples
- Can often incorrectly remove detailed features in history

Reconstruction with clamping

Reconstruction without clamping

Clamping + sharpening

GHOSTING

Imperfect history clamping

1spp Input from current frame

Reconstructed by TAA Obvious ghosting on grass

Bbox used for clamping visualized

TEMPORAL INSTABILITY AND MOIRÉ

Incorrect history rectification prevents sample accumulation

- Frame N samples
- Frame *N*+1 samples

UNDERSAMPLING ARTIFACTS

Newly disoccluded or invalidated region

Regions without enough samples accumulated appear aliased

WHAT'S NEXT?

DLSS 2.0: machine learning showing promise

- The handcrafted heuristics can be replaced by a neural network
- Trained from thousands of images; achieves much higher quality image reconstruction

NOT COVERED

Further reading

- More details and references in the paper on every topic
- Other related topics in the paper
 - ► TAA, HDR and color spaces
 - TAA performance
 - Variable rate shading
 - Temporal denoising
- More on DLSS 2.0
 - GTC 2020 talk: https://developer.nvidia.com/gtc/2020/video/s22698

