
Ge Chen1, Pedro Sander1,

Diego Nehab2,

Lei Yang3,

Liang Hu4

Alpha Blending
𝑫𝒏 = 𝑪𝒏𝜶𝒏 +𝑫𝒏−𝟏 𝟏 − 𝜶𝒏

A B𝑪𝑩𝜶𝑩 + 𝑪𝑨𝜶𝑨 − 𝑪𝑨𝜶𝑨𝜶𝑩 B over A

BA 𝑪𝑩𝜶𝑩 + 𝑪𝑨𝜶𝑨 − 𝑪𝑩𝜶𝑨𝜶𝑩 A over B

Issues:
➢ Fixed input order
➢ Large amount
➢ Sorting is slow
➢ Sort every time the scene or

viewpoint is changed

Solution:
Triangle order that applies to all
view directions without having to
sort.

Semi-transparent

Overview

• Introduction
– Occlusion region

– Occlusion graph

• Depth-Presorted Triangle Lists
– Motivations

– Run-time Selection Algorithm

– Preprocessing Algorithm

• Results

• Conclusions

Occlusion Region

l1

l2

l0

l5

l4

l3

A

B

Y

Z

X

f1

f0

f5

f4

f3

f2

• Occlusion region 𝑂𝐴→𝐵 is bounded by up to six extruded planes,
two triangle planes and viewpoint-space bounding planes

• Within this region, 𝐴 occludes 𝐵

Introduction

Occlusion Graph

Introduction

• Connects nodes if occlusion region exists

• If no cycles
– Assign a number to each face by topological sort

– The order of the assigned number is correct from any viewpoints

C

D

A

B

E

B

C

E

D

A

1

1

1

2

2

Occlusion Graph

Introduction

➢ Eliminating back-faces conflicts with transparency

C

D

A

B

E

B

C

E

D

A

1

1

1

2

2

A B
A B

Motivation – Transparency

C

D

A

B

E

C

D

A

B

E

C'
B'

A'
E'

D'
Duplicate

Flip

Depth-Presorted Triangle Lists

Motivation – Occlusion Cycle

F
H

G

F HG

F
H

G

p

H HGF

pp

Depth-Presorted Triangle Lists

Depth-Presorted Triangle Lists

• Requirements

✓One draw call / triangle list

✓Triangles may have multiple instances

✓Associate one test plane to each triangle instance

✓Accept only the first copy of all the duplicates

✓Culling by Z-buffer less test

✓Binary partition the rendering region for each
duplicates

H HGF

pp

H
HGF

pq

H

Depth-Presorted Triangle Lists

Run-time Selection Algorithm

• Each triangle is annotated by a test plane 𝑝𝑡
• If no associate plane, 𝑝𝑡 = [0,0,0 − 1]

• At run-time, simply test 𝐷𝑜𝑡൫
൯

𝑝𝑡, ൣ
൧

𝐸𝑦𝑒𝑥𝑦𝑧,
−1 > 0

• Turn on depth test to guarantee that exactly
one of the duplicates is rendered

• Plane test can be implemented in fragment
shader, vertex shader or geometry shader

Depth-Presorted Triangle Lists

Preprocessing Algorithm - Outline

1. Create back-facing duplicates

2. Compute occlusion graph and generate a
preliminary order

• If no cycles, a topological sort is enough [Skiena
2008]

• Otherwise, minimize num of back-edges

› Minimum Feedback Arcset problem

3. Scan the ordering one by one

– Operations: Keep, move, or duplicate

Depth-Presorted Triangle Lists

• From right to left

• Nodes (triangles) in the yellow regions are processed nodes
(no longer need to consider)

• 𝑥 is the current processing node

• 𝑓∗ are forward-edge nodes

• If no back-edges, just keep and proceed to next node

Preprocessing Algorithm – Keep

f3 xf2f1

Depth-Presorted Triangle Lists

x

Preprocessing Algorithm – Move

Move 𝑥 directly in front of b1

b3 xb2b1

b3x b2b1

Depth-Presorted Triangle Lists

𝑏∗ are back-edge nodes (bad)

Preprocessing Algorithm – Duplicate

Move x directly in front of 𝑏1 gives rise to two new back-edges

f2 xb2f1b1

f2x b2f1
b1

Depth-Presorted Triangle Lists

Preprocessing Algorithm – Duplicate

Otherwise, find 𝑝 that separates as many forward-edges as possible,
postpone handling new back-edges

Find p that completely separates viewpoints associate to 𝑏∗ from
those to 𝑓∗

x f2b2f1b1 x

p

Depth-Presorted Triangle Lists

x f2b2f1
b1 x

p

Preprocessing Algorithm

• Greedy algorithm
› As long as we manage to separate at least one of the edges

between 𝑓∗ and 𝑥 from at least one of edges between 𝑥
and 𝑏∗, we have made progress

• How well the algorithm works depends on the choice
of cutting plane 𝑝
› Try to find a 𝑝 that solves as many forward-edges as

possible

• See paper for details on
– Handling problematic cases

– Computing 𝑝

Depth-Presorted Triangle Lists

Viewpoint-Space Partitioning

• A single depth-presorted triangle list requires far too
many duplicates

• Divide viewpoint-space into several parts

– Enclose the model in a bounding polyhedron with a given
number of faces (4, 6, 16, 64)

Depth-Presorted Triangle Lists

Viewpoint-Space Partitioning

• A single depth-presorted triangle list requires far too
many duplicates

• Divide viewpoint-space into several parts

– Enclose the model in a bounding polyhedron with a given
number of faces (4, 6, 16, 64)

– Restricts view-point outside bounding region

– Further reduce the complexity of occlusion graph

– Still a single draw call is used to render the appropriate
index buffer segment

Depth-Presorted Triangle Lists

Viewpoint-Space Partitioning

• 6 viewpoint partitions provides a good trade-off

Depth-Presorted Triangle Lists

Results

• Compare with
– LL: Per-pixel dynamic

linked list
[Yang et al. 2010]

– DDP: Dual depth peeling
[Bavoil and Myers 2008]

– ST: Stochastic
transparency

[Enderton et al. 2010]

• Screen resolution:
1280 x 720

• 4x MSAA

Results

Results

Results

Results

Results

Conclusions

• Limitations
– Static model

– Long time preprocessing

– Outside of bounding polyhedron

• Advantages
– Significantly fast in run-time

– Simple run-time component

– One single draw-call

– A novel selection based scheme

• Future Work
– Deformable objects with limited range

– Reduce the number of duplicates

– Speed up the preprocessing time

Conclusions

Thanks

• Acknowledgement:

› HK RGC GRF grant #619509

› INST grant from FAPERJ

› All the students of VSGraph Lab at HKUST

