Geometry-Aware Framebuffer Level of Detail

Lei Yang Pedro V. Sander

Hong Kong University of Science and Technology

Jason Lawrence University of Virginia

Motivation

- Expensive procedural shading effects – Heavy pixel shader workload
 - Examples
 - Soft shadows
 27fps
 - Ambient Occlusion
 3.2fps
 - Procedural noise texture 120fps

Motivation

- A method for reducing pixel workload
 - General
 - Lightweight
 - No preprocessing
 - Smoothly adjustable tradeoff between speed/quality

Dynamic Resizing

- Render scene to low-res buffer (1st pass), then upsample to target resolution (2nd pass). [Montrym97]
 - # of original pixel shader invocation is reduced $(\propto 1/r^2)$
 - Blurs geometric discontinuities

Geometry-Aware?

Related Work

• Interleaved sampling [Segovia06, Laine07]

Image-based proxy accumulation [Sloan07]

Related Work

• Edge-and-Point render cache [Bala03, Velázquez-Armendáriz06]

Overview

- Geometry-Aware Resizing
- Fine-Grained Resizing
- Automatic Framerate Control
- Results and Demo
- Discussions and Conclusion

Our Approach

- Geometry-Aware Resizing
 - Upsample according to geometric similarities between lo-res and hi-res buffers
 - Two-pass technique
 - 1st pass: Render geometry with the original pixel shader on low-res buffer, store geometric info (normal & depth) + color
 - 2nd pass: Render geometry at full resolution and use geometry-aware kernel to reconstruct the shading from the lo-res buffer

Geometry-Aware Reconstruction

Bilinear

Bilateral

Weight samples based on geometric similarity

$$c_i^H = \frac{\sum c_j^L f(\hat{x}_i, x_j) g(|n_i^H - n_j^L|, \sigma_n) g(|z_i^H - z_j^L|, \sigma_z)}{\sum f(\hat{x}_i, x_j) g(|n_i^H - n_j^L|, \sigma_n) g(|z_i^H - z_j^L|, \sigma_z)}$$
Color sample *j* from the low-res buffer
Spatial filter: bilinear / biquadratic / bicubic / Gaussian

$$c_i^H = \frac{\sum c_j^L f(\hat{x}_i, x_j) \left[g(|n_i^H - n_j^L|, \sigma_n) \right] g(|z_i^H - z_j^L|, \sigma_z)}{\sum f(\hat{x}_i, x_j) \left[g(|n_i^H - n_j^L|, \sigma_n) \right] g(|z_i^H - z_j^L|, \sigma_z)}$$

Color sample *j* from the low-res buffer

Range filter 1: Gaussian of the *normal* distance

$$c_i^H = \frac{\sum c_j^L f(\hat{x}_i, x_j) g(|n_i^H - n_j^L|, \sigma_n) g(|z_i^H - z_j^L|, \sigma_z)}{\sum f(\hat{x}_i, x_j) g(|n_i^H - n_j^L|, \sigma_n) g(|z_i^H - z_j^L|, \sigma_z)}$$
Color sample *j* from the low-res buffer
Range filter 2: Gaussian of the *depth* distance

 $c_{i}^{H} = \frac{\sum c_{j}^{L} f(\hat{x}_{i}, x_{j}) g(|n_{i}^{H} - n_{j}^{L}|, \mathbf{\sigma}_{n}) g(|z_{i}^{H} - z_{j}^{L}|, \mathbf{\sigma}_{z})}{\sum f(\hat{x}_{i}, x_{j}) g(|n_{i}^{H} - n_{j}^{L}|, \mathbf{\sigma}_{n}) g(|z_{i}^{H} - z_{j}^{L}|, \mathbf{\sigma}_{z})}$

Large σ_z , large σ_n

Small σ_z , large σ_n

 $c_{i}^{H} = \frac{\sum c_{j}^{L} f(\hat{x}_{i}, x_{j}) g(|n_{i}^{H} - n_{j}^{L}|, \mathbf{\sigma}_{n}) g(|z_{i}^{H} - z_{j}^{L}|, \mathbf{\sigma}_{z})}{\sum f(\hat{x}_{i}, x_{j}) g(|n_{i}^{H} - n_{j}^{L}|, \mathbf{\sigma}_{n}) g(|z_{i}^{H} - z_{j}^{L}|, \mathbf{\sigma}_{z})}$

Large σ_z , small σ_n

Small σ_z , small σ_n

Overview

- Geometry-Aware Resizing
- Fine-Grained Resizing
- Automatic Framerate Control
- Results and Demo
- Discussions and Conclusion

Fine-Grained Resizing

- Resize only expensive & spatially smooth computations
- Break up the original shader
 - Expensive & spatially smooth computation:
 1st pass (at low-res)
 - Inexpensive / spatially high-freq computation:
 2nd pass (at full-res)

Fine-Grained Resizing

Comparison: Bilinear vs. Bilateral

• Fine-grained resizing + Bilinear upsample?

Geometry-Aware

Overview

- Geometry-Aware Resizing
- Fine-Grained Resizing
- Automatic Framerate Control
- Results and Demo
- Discussions and Conclusion

Automatic Framerate Control

- Dynamically select resizing factor *r* to maintain a *constant* framerate
- Use a feedback control mechanism
 - Input: previous frame-time
 - Output: r
 - Integral controller

²⁴

AFC implementation

Limit the range of *∆ t*, *∆ r* and *r*Experimentally determine *K*' with the maximum screen coverage

Overview

- Geometry-Aware Resizing
- Fine-Grained Resizing
- Automatic Framerate Control
- Results and Demos
- Discussions and Conclusion

Results – Car

Results – Car (con't)

Results – Chess

Results – Chess (con't)

Chess Scene

Results – Dragon

Results – Dragon (con't)

Dragon Scene

AFC results

- Experimental data:
 - Over 1000 frames
 - Various outside disturbances
 - View changes
 - Screen coverage changes
 - Shader workload changes

Overview

- Geometry-Aware Resizing
- Fine-Grained Resizing
- Automatic Framerate Control
- Results and Demo
- Discussions and Conclusion

Limitations

- Resizing high frequency signal

 Popping and flickering artifacts (aliasing)
- Undersampled fine geometry
 - Missing details around regions with high depth/normal complexities
 - Recompute missing samples in a 3rd pass?
- Added geometry processing overhead

Practical Advantages

- Multiple shader / objects
 - Sharing the same resized buffer
 - Sharing the reconstruction pass
 - Allow unified AFC
- Easy to apply

- Mainly an added reconstruction pass

Conclusion

- A general approach for reducing shading costs
- Respect geometric discontinuities better than conventional resizing
- Allow continuous adjustment of error/performance tradeoff
- Automatic framerate control
- Straightforward to incorporate into existing systems

Future Work

- Multi-resolution resizing
- Automated selection of resized elements
- Resize for super-sample anti-aliasing
- Obtain a Bosnia-Herzegovina visa ③

Questions?

