

SIGGRAPH2012

The 39th International Conference and Exhibition on Computer Graphics and Interactive Techniques

Accelerating Rendering Pipelines Using Bidirectional Iterative Reprojection

LEI YANG BOSCH RESEARCH (PALO ALTO, CA,USA)

Huw Bowles
Gobo Games (Brighton, UK)

ADDITIONAL CONTRIBUTORS:

Overview

- Introduction
- Iterative reprojection
- Bidirectional reprojection
- Conclusion

The papers

- Two papers (concurrent work) on iterative reprojection:
- Iterative Image Warping
 H. Bowles, K. Mitchell, B. Sumner, J. Moore, M. Gross
 Computer Graphics Forum 31(2) (Proc. Eurographics 2012)

Image-space bidirectional scene reprojection
L. Yang, Y.-C. Tse, P. Sander, J. Lawrence, D. Nehab, H. Hoppe, C. Wilkins.
ACM Transactions on Graphics, 30(6) (Proc. SIGGRAPH Asia 2011)

Split/Second

Advances in Real-Time Rendering in 3D Graphics and Games

Traditional pipelines

- Current graphics architectures require brute force rendering of every frame, so they don't scale well to high frame rates
- However, nearby frames are usually very similar thanks to temporal coherence
- We can synthesize a plausible frame without performing the rasterization and shading, by reusing rendering results from neighbouring frame(s)

Frame interpolation

Rendered Frames

Interpolated Frame(s)

Real-time reprojection strategies

- Rasterize scene from target viewpoint and sample shading from the source viewpoints (Nehab2007)
- Warp the existing frames using per-pixel primitives into the target viewpoint (Mark1997)
- Use some kind of approximation (Andreev2010, Didyk2010)
- Warp frames using an iterative search (Yang2011, Bowles2012)
- See papers for detailed comparison

Overview

- Introduction
- Iterative reprojection
 - Algorithm
 - Iteration initialisation
 - Disocclusion handling
- Bidirectional reprojection
- Conclusion

Iterative reprojection

Image-based iterative reprojection

Know mapping of each pixel via equation:

$$p_{tgt} = p_{src} + V(p_{src})$$

• Run a GPU shader over the target frame: $p_{t,qt}$ known

• Problem: How to solve for p_{src} ?

Iterative solution

Know mapping of each pixel via equation:

$$p_{t,gt} = p_{src} + V(p_{src})$$

Idea - Solve iteratively:

$$p_{src}^{i+1} = p_{tgt} - V(p_{src}^i)$$

Fixed Point Iteration

Iterative solution

- Algorithm
 - 1. Pick a start point: p_{src}^{0} (e.g. p_{tgt})
 - 2. Apply recurrence relation until convergence: $p_{src}^{i+1} = p_{tgt} V(p_{src}^{i})$

Advances in Real-Time Rendering in 3D Graphics and Games

Single frame reprojection – Split/Second scene (6x slow motion)

60Hz (With reproj. frames) 30Hz (Original)

Performance

Render Time Per View (PC, 720p)

Considerations

- Iteration initialisation
- Disocclusions

Iteration initialisation

Target

Background

Green Sphere

Advances in Real-Time Rendering in 3D Graphics and Games

Iteration initialisation

 Subdivide into quads and rasterize at warped positions (Bowles2012)

Disocclusions

Advances in Real-Time Rendering in 3D Graphics and Games

Disocclusions

Advances in Real-Time Rendering in 3D Graphics and Games

Disocclusions

- Reshading (Nehab2007)
 - Requires traversing the scene again
- Inpainting (Andreev2010, Bowles2012)
 - Image-based
 - Depends on the hole size and visual saliency of the region
- Bidirectional reprojection (Yang2011)

Overview

- Introduction
- Iterative reprojection
- Bidirectional reprojection
 - Algorithm
 - Practical details
 - Results
- Conclusion

Reducing disocclusion

Bidirectional reprojection

Scenario: frame interpolation:

Render *I-frames* (Intra-frames, or key-frames), Insert interpolated *B-frames* (Bidirectionally interpolated-frames)

"Bidirectional Reprojection" (Bireproj)

Bidirectional reprojection

- Generate motion flow fields for each pair of I-frames
- For each pixel in B-frame $t+\alpha$
 - Search in forward flow field V_t^f to reproject to I-frame t
 - Search in backward flow field V_{t+1}^b to reproject to I-frame t+1
 - Load and blend colors from frame t and t+1

Iterative reprojection

- Motion flow fields map pixels between I-frames t and t+1
 - Independent of α
- Assume the motion between t and t+1 is linear: scale the vectors by α (or $1 - \alpha$)
- Use iterative reprojection to solve $p_{t+\alpha}$

Motion vector field generation

- Additional position transform in the VS
- V^b commonly found in the G-buffer (for motion blur)
- Missing forward motion field V_t^f ?
 - Negate the field V_t^b
 - Use iterative reprojection to improve the precision (based on a precise V_{t+1}^b)

Choosing the right pixel

- The results from frame t and t+1 may disagree
- Reasons:
 - Occlusion: one source is occluded by the other in $t+\alpha$
 - choose the visible one based on the interpolated depth

Choosing the right pixel

- The results from frame t and t+1 may disagree
- Reasons:
 - Incorrect reprojection: iterative reprojection failed
 - Sign: reprojection error -- residual between $p_t + v$ and $p_{t+\alpha}$
 - mutual correction between p_t & p_{t+1} with correspondence

Choosing the right pixel

- The results from frame t and t+1 may disagree
- Reasons:
 - Shading changed: lighting, shadows, dynamic texture...
 - interpolate the results based on α

Additional search initialization

- Problems when using the target pixel as iteration starting point
 - a) Imprecise initial vector across object boundaries
 - b) Search steps can fall off the object
- For a):
 - Additional 4 candidates within a small neighborhood
 - Initialize using the result from a closer B-frame

Additional search initialization

- The motion field is often only piecewise smooth
 - a) Imprecise initial vector across object boundaries
 - b) Search steps can fall off the object
- For b):
 - Initialize using the vector from the opposite I-frame

Additional search initialization

I-frame *t*

. . .

B-frame $t+\frac{1}{2}$

I-frame t+1

Image-based (No additional init.)

Image-based (with "b")

Image-based (with "a+b")

Partitioned rendering

- I-frame shading parallel to B-frame generation
- Partition the I-frame rendering tasks evenly
 - Straightforward for games that has hundreds or more draw calls per frame
 - Runtime: interleave B-frame generation (green) with I-frame rendering (red)
 - Possible: no need to partition with (future) GPU multitasking

Lag

- I-frame "t" must start rendering at $t 1 \frac{n-1}{n}$ (n≡4 here)
 - Introduces a potential lag to the pipeline I-frame delayed by $\frac{n-1}{n}$
 - However: the motion of frame t is already seen at B-frame $t \frac{n-1}{n}$

Lag

- Lag with standard double buffering:
 - Original: 1 time step (ts)
 - Bireproj: position: $1 + \frac{n-1}{n}$ ts, response: 1 ts
- Lag with 1-frame render ahead queue:
 - Original: 2 ts
 - Bireproj: 2 ts (position)
- Theoretical / empirical analysis (Yang2011)

Bireproj results

- Example: three B-frames per I-frame time step
- 2-3ms for a B-frame (1280x720)
- Suitable scenarios:
 - Vertex-bound scenes
 - Fill-bound scenes
 - Multi-pass / deferred rendering

Bireproj results - the walking scene

Fill-bound scene with an expensive pixel shader (2.6x speed-up)

Advances in Real-Time Rendering in 3D Graphics and Games

Bireproj results – the terrain scene

Geometry bound scene (1M triangles) (2.8x speed-up)

Advances in Real-Time Rendering in 3D Graphics and Games

Bireproj results - the head scene

Multi-pass skin rendering [d'Eon and Luebke 2007] (2.6x speed-up)

Advances in Real-Time Rendering in 3D Graphics and Games

Bireproj results – shading interpolation SIGGRAPH2012

12

Reduce popping artifacts with dynamic lighting and shadows

Advances in Real-Time Rendering in 3D Graphics and Games

Bireproj results - Split/Second

- Results from Split/Second by Black Rock Studio
 - Input: an image set with corresponding depth and backward motion vector fields
 - Some of the edge artifacts are caused by imprecise depth
 - A stress test for Bireproj

SPLIT/SECOND AIRPORT SCENE (4x SLOW MOTION)

ORIGINAL

BIREPROJ

SPLIT/SECOND AIRPORT SCENE (4x SLOW MOTION)

ORIGINAL

BIREPROJ

Limitations

- Dynamic shading interpolation
 - 8 Does not work when visible in only one source
 - ✓ Separate and render the problematic components per B-frame
- Fast moving thin object visibility
 - 8 Reprojection may be improperly initialized
 - ✓ Use robust initialization (with DX 10+ level hardware)
- Bireproj introduces a small lag
 - Eess than one (I-frame) timestep of positional delay
 - ✓ Response delay is minimum (≈0)

Summary

- Reuse shading results to reduce redundant computation
- Image-based iterative reprojection
 - Purely image-based (no need to traverse the scene)
 - Fast 0.85 ms on PS3 (1280x720)
 - Very accurate reprojection when given proper initialization
- Bidirectional reprojection
 - Almost eliminates disocclusion artifacts
 - Boosts framerate by almost n (# of interpolated frames) times
 - Interpolates dynamic shading changes

Further details

- Refer to [Bowles et al 2012] for:
 - Application to general image warps, inc. spatial rerpojections and non-linear temporal reprojection
 - Analysis of convergence properties of FPI
 - Robust initialization algorithm
- Refer to [Yang et al 2011] for:
 - Bireproj using traditional reverse reprojection
 - Hybrid geometry/image-based reprojection
 - Theoretical & empirical lag analysis

Thank you!

- Acknowledgements
 - Paper authors group 1 (IIW): K. Mitchell, B. Sumner, J. Moore, M. Gross
 - Paper authors group 2 (Bireproj): Y.-C. Tse, P. Sander,
 J. Lawrence, D. Nehab, H. Hoppe, C. Wilkins.
 - Disney Interactive Studios (for the Split/Second assets)
 - NVIDIA and XYZRGB (for the human head assets)

References

- Mark W. R., McMillan L., Bishop G. "Post-rendering 3D Warping", I3D 1997
- Nehab D., Sander P., Lawrence J., Tatarchuk N., Isidoro J. "Accelerating real-time shading with reverse reprojection caching", Graphics Hardware 2007
- Andreev D., "Real-time frame rate up-conversion for video games", SIGGRAPH Talk 2010
- Bowles H., Mitchell K., Sumner R. W., Moore J., Gross M., "Iterative Image Warping", Eurographics 2012
- Yang L., Tse Y.-C., Sander P. V., Lawrence J., Nehab D., Hoppe H., Wilkins C. L.
 "Image-based bidirectional scene reprojection", SIGGRAPH Asia 2011
- Didyk P., Eisemann E., Ritschel T., Myszkowski K., Seidel H.-P., "Perceptually-motivated Real-time Temporal Upsampling of 3D Content for High-refresh-rate Displays", Eurographics 2011