
1

2

3

4

5

Outline

• Reprojection and data reuse

– Taxonomy

• Bidirectional reprojection

– Scene-assisted reprojection

– Image-based reprojection

– Interoperability

• Partitioned rendering and lag

– User study

• Results

Goal

• Optimize performance for real-time rendering

– For complex shading tasks

– For low-end platform adaptation

• A general-purpose acceleration method

– Generate in-between frames with low cost

– In real-time (interactive)

– Trade quality for performance

Reprojection for data reuse

• Generate in-between frames with low cost [Scherzer’11]:

Reproject and reuse pixel data from similar frames

• Avoid redundant computation

• Newly disoccluded regions can be missing

Frame t Frame t +

Reprojection for data reuse

• Taxonomy for reprojection methods

– Temporal direction

– Data access

– Correspondence domain

Reprojection: Temporal direction

• Forward vs. Backward

• We exploit both – bidirectional reprojection

– Few disocclusions → no reshading

– Smooth shading interpolation

Frame t Frame t +1Frame t +α

… …

Visible

Occluded

Corresponding
surface point
in I-frames:

Reprojection: Data access

• Scatter vs. Gather

… …

Scatter

Frame t Frame t +1Frame t +α

Reprojection: Data access

• Scatter vs. Gather

• We choose “gather”

– Simpler, faster, higher quality filtering

… …

Gather

Frame t Frame t +1Frame t +α

● ● ●
● ● ●
● ● ●

● ● ●
● ● ●
● ● ●

• Source (w/ scatter) vs. target (w/ gather)

• We propose “source” (gather-based)

Reprojection: Correspondence domain

(source) (source)(target)

Motion flow
vectors

… …

-- Domain where the motion flows are stored

Frame t Frame t +1Frame t +α

Overview of our approach

• Render I-frames, insert interpolated B-frames

• Use bidirectional reprojection (“Bireproj”)

• Two approaches:

– Scene-assisted: extension of [Nehab’07]

– Image-based: main contribution

I-frame t B-frame t +¼ B-frame t +½ B-frame t +¾ I-frame t +1

Scene-assisted Bireproj

• Rasterize each B-frame

– Perform reprojection[Nehab’07] onto both I-frames

– Occlusion test: reprojected depth = stored depth?

– Blend visible results based on α

I-frame t I-frame t +1B-frame t +α

… …

(depth) (depth)

Image-based Bireproj

• Reprojection by searching in flow fields

– Generate motion flow fields for each pair of I-frames

– For each pixel in B-frame t +α

• Search in forward flow field 𝑉𝑡
𝑓

to reproject to I-frame t

• Search in backward flow field 𝑉𝑡+1
𝑏 to reproject to I-frame t +1

• Load and blend colors from frame t and t +1

… …

(forward flow 𝑉𝑡
𝑓

) (backward flow 𝑉𝑡+1
𝑏)

I-frame t I-frame t +1B-frame t +α

The iterative search algorithm
• Assumptions:

1. The motion between t and t +1 is linear

2. The motion flow field is continuous and smooth

• Given 𝑝𝑡+𝛼, find 𝑝𝑡 in field 𝑉𝑡
𝑓
such that

𝑝𝑡 + 𝛼𝑉𝑡
𝑓
[𝑝𝑡] = 𝑝𝑡+𝛼

– Same for 𝑝𝑡+1 (in reverse)

• An inverse-mapping problem

Motion flow

𝑝𝑡+𝛼

Image-space
𝑝𝑡+1

𝑝𝑡

𝑉𝑡
𝑓
[𝑝𝑡]

𝑝𝑡+𝛼

The iterative search algorithm

• Iterative search

1. Initialize vector 𝒗 with the motion flow 𝛼𝑉𝑡
𝑓
[𝑝𝑡+𝛼]

2. Attempt to find 𝑝𝑡 using 𝒗

3. Update 𝒗with the motion flow at current 𝑝𝑡 estimate

4. Repeat 2-3 (3 iterations suffice in our experiments)

Motion flow

𝑝𝑡

𝑝𝑡+𝛼

Iterative reprojection

𝒗

𝒗
𝒗

Visibility test criteria

1. Screen-space reprojection error

– Residual between 𝑝𝑡 + 𝒗 and 𝑝𝑡+𝛼
– Large error → unreliable 𝑝𝑡
– 𝑝𝑡& 𝑝𝑡+1: use the more precise side to readjust the other

2. Scene depth

– Significantly different scene depths imply occlusion

– Trust the closer one (smaller depth)

pt

𝑝𝑡+𝛼

𝒗
Reprojection
error

Additional search initialization

• The motion field is often only piecewise smooth

a) Imprecise initial vector across object boundaries

b) Search steps can fall off the object

• For a) :

– Additional 4 candidates within a small neighborhood

– Initialize using the result from a closer B-frame

• For b):

– Initialize using the vector from the opposite I-frame

I-frame t B-frame t +α I-frame t +1

fast

slow

● ●

● ●

Additional search initialization

• Comparison

I-frame t I-frame t +1B-frame t +½B-frame t +¼ B-frame t +¾

Linear blending
Image-based

(No additional init.)

Image-based
(with “b”)

Image-based
(with “a+b”)

Interoperability

• Problem with fast moving thin objects

• Solution: mix multiple approaches (buffers shared)

I-frame t I-frame t +1B-frame t +0.5

Linear blending Ours image-based Ours image-based
+ scene-assisted

pass on thin objects

Ours image-based
+ separate rendering

of thin objects

… …

Faster More precise

Partitioned rendering

• I-frame shading parallel to B-frame generation

• Partition the I-frame rendering tasks evenly

– Compute each group during a frame display

• No need to partition with (future) GPU multitasking

• I-frame “t ” must start rendering at 𝑡 − 1 −
𝑛−1

𝑛

– A potential lag

display

use

t-1 t

It computation

& display

B computation

& display

Animation input for It

t-2

Lag

• Lag with standard double buffering:

– Original: 1 time step (ts)

– Bireproj: I-frame: 1 +
𝑛−1

𝑛
ts, B-frame: 1 +

1

𝑛
ts

• Lag with 1-frame render ahead:

– Original: 2 ts

– Bireproj: 2 ts (I-frame)

• Conjecture:

Lag with Bireproj is similar to the standard lag

User study

• The ball shooting game

– Goal: click green balls, avoid red ones and null clicks

– Subjects play in different modes and record results

User study

• Modes:

– Standard rendering 15fps (Baseline)

– Simulated 30fps / 60fps

– Artificially lagged 50/100/200ms (on 60fps)

to be compared against:

– Bireproj (15 → 60fps)

User study

Mode 60fps* 30fps* 15fps Lag 50ms Lag 100ms Lag 200ms

Green Hits ● ● ● ● ● ●

Red Hits ● ● ● ● ● ●

Misses ● ● ● ● ● ●

Enjoyment ● ● ● ● ● ●

Difficulty ● ● ● ● ● ●

Responsiveness ● ● ● ● ● ●

Smoothness ● ● ● ● ● ●

• Conclusions:
– Our method did better than 15fps, but worse than 30fps

– Perceived lag: 50ms < Bireproj << 100ms
(The lag of standard 15fps is 66.7ms)

o
b

je
ct

iv
e

su
b

je
ct

iv
e

● Better than Bireproj ●Worse than Bireproj ● No significant difference

* infeasible in real scenarios

Results

• Suitable scenarios:

– Vertex-bound

– Fill-bound scenes

– Multi-pass rendering

– Motion blur rendering

• Three B-frames per I-frame time step

• Image-based Bireproj:

– 2-3ms for a B-frame

– Pixel success rate: ≥99.6%

Results – the walking scene

• Fill-bound with an expensive noise shader

• Speed vs. reference: 2.9x (scene), 2.6x (image)

Results – the terrain scene

• Geometry bound (1M triangles)

• Speed vs. reference: 1x (scene), 2.8x (image)

Results – the head scene

• Multi-pass skin rendering [d’Eon and Luebke 2007]

• Speed vs. reference: 3.4x (scene), 2.9x (image)

Results – motion blur

• Accumulate 10 B-frames per I-frame

• Speed vs. reference: 5.4x (scene), 6.2x (image)

Improved shading interpolation

• Compared to uni-directional reprojection: Reduced
popping artifacts with dynamic lighting and shadows

Conclusion

• General purpose rendering acceleration

• Real-time temporal upsampling

– Bidirectional reprojection

– Image-based iterative reprojection

• Advantages:

– No need to reshade for disocclusion

– Compatible with multi-pass and deferred rendering

– Better dynamic shading interpolation

– Effect of lag is small or negligible

Thanks!

• Acknowledgement

– Piotr Didyk (for models and data)

– NVIDIA and XYZRGB (for the human head assets)

– NSF CAREER Award CCF-0747220

– HK RGC GRF grants #619008 and #619509

– INST grant from FAPERJ

