

SIGGRAPHASIA2009

革新の波動 the pulse of innovation

Amortized Supersampling

Lei Yang $^{\mathbf{H}}$, Diego Nehab $^{\mathbf{M}}$, Pedro V. Sander $^{\mathbf{H}}$, Pitchaya Sitthi-amorn $^{\mathbf{V}}$, Jason Lawrence $^{\mathbf{V}}$, Hugues Hoppe $^{\mathbf{M}}$

M_{Microsoft*}
Research

Outline

- Problem
- Amortized supersampling basic approach
- Challenge the resampling blur
- Our algorithm
- Results and conclusion

- Shading signals not band-limited
 - Procedural materials
 - Complex shading functions
- Band-limited version (analytically antialiased)
 - Ad-hoc
 - Difficult to obtain

Problem

- Supersampling
 - General antialiasing solution
 - Compute a Monte-Carlo estimator

$$f_N[p] \leftarrow \frac{1}{N} \sum_{i=1}^{N} s_t[p]$$

Can be prohibitively expensive

Accelerating Supersampling

- Shading functions usually vary slowly over time
- Reuse samples from previous frames
 - Reprojection
 - Generate only one sample every frame

Amortized Supersampling

- Cannot afford to store all the samples from history
- \blacksquare Keep only a running tally f_t per pixel
 - Update it every frame using exponential smoothing

$$f_t[p] \leftarrow (\alpha) s_t[p] + (1 - \alpha) f_{t-1}(\pi_{t-1}(p))$$

Reverse Reprojection [Nehab07, Scherzer07]

- lacksquare Compute previous location $\pi_{t ext{--}1}(p)$ of point p
- $lue{}$ A bilinear texture fetch for the previous value $f_{t-1}(\pi_{t-1}(p))$
 - Check depth for occlusion changes

Effect of the smoothing factor α

- \square Larger α : less history, more aliasing/noise
- Smaller α: more history, less aliasing/noise
- lacktriangle Equal weight of samples: $lpha=rac{1}{t}$

An artifact of recursive reprojection

10/27

Blur due to repeated bilinear interpolation

Factors of the blur

11/27

■ Fractional pixel velocity $v = (v_x, v_y)$

Exponential smoothing factor α

The expected blur variance is (derivation in the appendix)

$$\sigma_v^2 = \sigma_G^2 + \frac{1 - \alpha}{\alpha} \, \frac{v_x(1 - v_x) + v_y(1 - v_y)}{2}$$

- Approaches for reducing the blur:
 - Increase resolution of the history buffer
 - Avoid bilinear resampling whenever possible
 - 3. Limit α when needed

(1) Increase resolution

- Option 1:
 - Keep a history buffer at high resolution (2x2)
 - Have to update it every frame ⊗
- Option 2:
 - Keep 4 subpixel buffers at normal resolution
 - Only update one of them each frame

Subpixel buffers

(2) Avoid bilinear sampling

- Reconstructing from subpixel buffers
 - Forward reproject the samples from 4 subpixel buffers to the current subpixel quadrant
 - Weight them using a tent function
 - GPU approximation/acceleration

Reconstruction scheme

(3) Limiting blur via bounding α

- Derive a relationship between
 - \blacksquare Blur variance σ^2
 - $lue{}$ Motion velocity $oldsymbol{v}$ and $oldsymbol{lpha}$
- Analytic relationship is not attainable
 - Numerical simulation and tabulate

Tradeoff of blur and aliasing

Adaptive evaluation

- Newly disoccluded pixels are prone to aliasing
- Additional shading for subpixels that fail in reconstruction

Accounting for signal changes

- Detect fast signal change
 - React by more aggressive update
- $f Estimate residual \ m e between:$
 - \square Current sample s_t (aliased/noisy)
 - $lue{}$ History estimate f_t
- Blur the residual estimate to remove aliasing/noise
- $lue{}$ Bound lpha for limiting arepsilon no larger than $au_{arepsilon}$

Tradeoff of signal lag and aliasing

Conclusion

- A real-time scheme for amortizing supersampling costs
 - Quality comparable to 4x4 stratified supersampling
 - Speed is 5x-10x of 4x4 supersampling
 - A single rendering pass
- Future work
 - A broader range of temporal effects
 - Edge AA and motion blur

Questions?

GPU acceleration for reconstruction

- □ Forward-reproject 16 samples to the tent →
- Reverse-reproject the tent to 4 subpixel buffers
 - A single bilinear fetch in each

